CHAPTER IV # REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM This Page Intentionally Left Blank #### **MAJOR PLANT SECTIONS** - A1. Reactor Vessel (Boiling Water Reactor) - A2. Reactor Vessel (Pressurized Water Reactor) - B1. Reactor Vessel Internals (Boiling Water Reactor) - B2. Reactor Vessel Internals (PWR) Westinghouse - B3. Reactor Vessel Internals (PWR) Combustion Engineering - B4. Reactor Vessel Internals (PWR) Babcock and Wilcox - C1. Reactor Coolant Pressure Boundary (Boiling Water Reactor) - C2. Reactor Coolant System and Connected Lines (Pressurized Water Reactor) - D1. Steam Generator (Recirculating) - D2. Steam Generator (Once-Through) (refined outline to be added when issued for public comment) **Explanation of September 30, 2004 changes in preliminary interim draft chapter outline and aging management review (AMR) tables**: Within the AMR tables, this update process increases license renewal review efficiency by: - Consolidating components (combining similar or equivalent components with matching materials, environment and AMP into a single line-item), - Increasing consistency between Material/Environment/Aging effects/aging management Program (MEAP) combinations between systems (some existing MEAPs had multiple definitions that, based on the aging effect, could be broadened to envelope these into a singe MEAP), - Correcting any inconsistencies in the 2001 edition of the GALL Report, - Updating references to the appropriate aging management programs, and - Incorporating line-item changes based on approved staff SER positions or interim staff guidance. The principal effect of this change is that the tables present the MEAP combinations at a higher level, and the prior detail within a structure or component line item is no longer explicitly presented. Consequently, the identifiers for subcomponents within a line item are no longer presented in the tables. As a result, the introductory listings of these subcomponents (originally in text preceding each table) have been deleted. The following AMR tables contain a revised "Item" column and a new column titled "Link", which was not contained in the July 2001 revision. The "Item" number is a unique identifier that is used for traceability and, as mentioned above, no longer presents the detailed subcomponent identification. The link identifies the original item in the current version of the GALL Report when applicable (items added to this list refer to bases statements not yet available). By January 30, 2005, the NRC staff plans to issue a revised GALL Report (NUREG-1801) and SRP-LR (NUREG-1800) for public comment. NRC anticipates re-numbering the line-items to provide an improved unique identifier as part of the public comment document. Also as part of the public comment process, the NRC will issue a NUREG documenting the basis for the proposed changes to the GALL Report and the SRP-LR. This NUREG bases document will be an aid for those reviewing the revised documents to understand what was changed and the basis for the proposed changes. # A1. REACTOR VESSEL (BOILING WATER REACTOR) # Systems, Structures, and Components This section comprises the boiling water reactor (BWR) pressure vessel and consists of the vessel shell and flanges; attachment welds; the top and bottom heads; nozzles (including safe ends) for the reactor coolant recirculating system and connected systems such as high and low pressure core spray, high and low pressure coolant injection, main steam, and feedwater systems; penetrations for CRD stub tubes, instrumentation, standby liquid control, flux monitor, and drain lines; and control rod drive mechanism housings. The support skirt and attachment welds for vessel supports are also included in the table. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all structures and components that comprise the reactor vessel are governed by Group A Quality Standards. #### **System Interfaces** The systems that interface with the reactor vessel include the reactor vessel internals (IV.B1), the reactor coolant pressure boundary (IV.C1), the emergency core cooling system (V.D2), and standby liquid control system (VII.E2). | tem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|---------------|---|--|-----------------|---|--|-----------------------| | ₹-68 | IV.A1.4-
a | ends | | Reactor coolant | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | Chapter XI.M7, "BWR Stress Corrosion Cracking," and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) | No | | ₹-66 | IV.A1.3-
c | Nozzles
Control rod drive
return line | | Reactor coolant | Cracking/ cyclic loading | Chapter XI.M6, "BWR Control Rod
Drive Return Line Nozzle" | No | | ₹-65 | IV.A1.3-
b | Nozzles
Feedwater | Steel (without lining/coating or with degraded lining/coating) | Reactor coolant | Cracking/ cyclic loading | Chapter XI.M5, "BWR Feedwater
Nozzle" | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |------|---------------|--|----------|----------------------------------|---|--------------------------------|-----------------------| | R-67 | IV.A1.3-
e | Nozzles Low pressure coolant injection or RHR injection mode | | Reactor coolant and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement | | | | tem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|------------------------|--|--|-----------------|--|---|-----------------------| | ₹-69 | IV.A1.5-
a | Penetrations Control rod drive stub tubes Instrumentation Jet pump instrument Standby liquid control Flux monitor Drain line | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking,
cyclic loading | Chapter XI.M8, "BWR Penetrations," and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) | No | | ₹-04 | IV.A1.2-a
IV.A1.3-a | | Steel, stainless steel, cast austenitic stainless steel, carbon steel with nickel- alloy or stainless steel cladding, nickel-alloy | | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects or fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | TLAA | | A1 | Reactor Ves | · , | 1 | T | T | | 1 | |------|---------------|--|---|-------------------------------------|---|---|------------------------| | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | R-70 | IV.A1.7-
a | Support skirt
and attachment
welds | Steel | Air – indoor
uncontrolled | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1). | Yes,
TLAA | | R-60 | IV.A1.1-
c | Top head
enclosure
Closure studs
and nuts | High strength low alloy steel Maximum tensile strength < 1172 MPa (<170 Ksi) | Air with reactor
coolant leakage | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | Chapter XI.M3, "Reactor Head Closure Studs" | No | | R-61 | IV.A1.1-
d | Top head
enclosure
Vessel flange
leak detection
line |
Stainless
steel, nickel
alloy | Air with reactor
coolant leakage | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | A plant-specific aging management program is to be evaluated because existing programs may not be able to mitigate or detect crack initiation and growth due to SCC of vessel flange leak detection line. | Yes,
plant specific | | R-59 | IV.A1.1-
a | Top head enclosure (without cladding) Top head Nozzles (vent, top head spray or RCIC, and spare) | Steel | Reactor coolant | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections IWB,
IWC, and IWD," for Class 1
components and Chapter XI.M2,
"Water Chemistry," for BWR water in
BWRVIP-29 (EPRI TR-103515) | No | | IV
A1 | REACTOR
Reactor Ves | | RNALS, AND RI | EACTOR COOLAN | T SYSTEM | | | |----------|------------------------|-------------------------------------|-------------------------------------|-----------------|---|--|-----------------------| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | R-64 | IV.A1.2-
e | Vessel shell
Attachment
welds | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress corrosion cracking and intergranular stress corrosion cracking | Chapter XI.M4, "BWR Vessel ID Attachment Welds," and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | A1 | Reactor Vessel (BWR) | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | IAdina Manadamant Program (AMP) | Further
Evaluation | |------|-----------|--|--|----------------------------------|---|---|-----------------------| | R-62 | IV.A1.2-c | Vessel shell
Intermediate
beltline shell
Beltline welds | Steel (without lining/coating or with degraded lining/coating) | Reactor coolant and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement | Neutron irradiation embrittlement is a time dependent aging mechanism to be evaluated for the period of extended operation for all ferritic materials that have a neutron fluence exceeding 1017 n/cm2 (E >1 MeV) at the end of the license renewal term. Aspects of this evaluation may involve a TLAA. In accordance with approved BWRVIP-74, the TLAA is to evaluate the impact of neutron embrittlement on: (a) the adjusted reference temperature, the plant's pressure-temperature limits, (b) the need for inservice inspection of circumferential welds, and (c) the Charpy upper shelf energy or the equivalent margins analyses performed in accordance with 10 CFR 50, Appendix G. Additionally, the applicant is to monitor axial beltline weld embrittlement. One acceptable method is to determine that the mean RTNDT of the axial beltline welds at the end of the extended period of operation is less than the value specified by the staff in its May 7, 2000 letter. See the Standard Review Plan, Section 4.2 "Reactor Vessel Neutron Embrittlement" for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | | | IV
A1 | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM Reactor Vessel (BWR) | | | | | | | | | | |----------|--|--|--|-------------------------------------|--|---|------------------------|--|--|--| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | | | | R-63 | IV.A1.2-
d | Vessel shell
Intermediate
beltline shell
Beltline welds | Steel (without lining/coating or with degraded lining/coating) | Reactor coolant
and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement | Chapter XI.M31, "Reactor Vessel Surveillance" | Yes, plant
specific | | | | ## A2. REACTOR VESSEL (PRESSURIZED WATER REACTOR) # Systems, Structures, and Components This section comprises the pressurized water reactor (PWR) vessel pressure boundary and consists of the vessel shell and flanges, the top closure head and bottom head, the control rod drive (CRD) mechanism housings, nozzles (including safe ends) for reactor coolant inlet and outlet lines and safety injection, and penetrations through either the closure head or bottom head domes for instrumentation and leakage monitoring tubes. Attachments to the vessel such as core support pads, as well as pressure vessel support and attachment welds, are also included in the table. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all systems, structures, and components that comprise the reactor coolant system are governed by Group A Quality Standards. #### **System Interfaces** The systems that interface with the PWR reactor vessel include the reactor vessel internals (IV.B2, IV.B3, and IV.B4, respectively, for Westinghouse, Combustion Engineering, and Babcox and Wilcox designs), the reactor coolant system and connected lines (IV.C2), and the emergency core cooling system (V.D1). | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|---------------|--|---|-------------------------------------|--|---|------------------------| | R-71 | IV.A2.1-
c | Closure head
Stud assembly | High strength low alloy steel Maximum tensile strength < 1172 MPa (<170 Ksi) | Air with reactor coolant leakage | Cracking/ stress
corrosion cracking | | No | | R-73 | IV.A2.1-
e | Closure head
Stud assembly | | Air with reactor coolant leakage | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1). | Yes
TLAA | | R-72 | IV.A2.1-
d | Closure head
Stud assembly | | Air with reactor
coolant leakage | Loss of material/
wear | Chapter XI.M3, "Reactor Head
Closure Studs" | No | | R-74 | IV.A2.1-
f | Closure head
Vessel flange leak
detection line | Stainless stee | Air with reactor
coolant leakage | Cracking/ stress corrosion cracking | A plant-specific aging management program is to be evaluated because existing programs may not be capable of mitigating or detecting crack initiation and growth due to SCC in the vessel flange leak | Yes, plant
specific | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |---|----|---| | ļ | A2 | Reactor Vessel (PWR) | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|---------------|---|-----------------|----------------------------------|---------------------------------------|---|------------------------| | | | | | | | detection line. | | | R-78 | IV.A2.2-
e | Control rod drive head penetration Flange bolting | Stainless steel | Air with reactor
coolant leakage | Cracking/ stress corrosion cracking | Chapter XI.M18, "Bolting
Integrity" | No | | R-79 | IV.A2.2-
f | Control rod drive head penetration Flange bolting | Stainless steel | Air with reactor coolant leakage | Loss of material/
wear | Chapter XI.M18, "Bolting
Integrity" | No | | R-80 | IV.A2.2-
g | Control rod drive head penetration Flange bolting | Stainless steel | Air with reactor coolant leakage | Loss of preload/
stress relaxation | Chapter XI.M18, "Bolting
Integrity" | No | | R-75 | IV.A2.2-
a | Control rod drive head
penetration
Nozzle | Nickel alloy | Reactor coolant | water stress | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Order EA-03-009 or any subsequent regulatory requirements. | Yes, plant
specific | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|-------------------------------------|---|---|--------------------------------|--|--|------------------------| | R-77 | IV.A2.2-
d | Control rod drive head penetration Pressure housing | Cast
austenitic
stainless steel | >250°C (>482°F) | | Chapter XI.M12 "Thermal
Aging Embrittlement of Cast
Austenitic Stainless Steel
(CASS)" | No | | R-76 | IV.A2.2-
b | Control rod drive head penetration Pressure housing | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary | No | | R-88 | IV.A2.6-
a | Core support pads/core
guide lugs | Nickel alloy | Reactor coolant | water stress | water in EPRI TR-105714 A plant-specific aging management program is to be evaluated. The applicant is to provide a plant-specific AMP or participate in industry programs to determine appropriate AMP. | Yes, plant
specific | | R-17 | IV.A2.8-b
IV.A2.1-a
IV.A2.5-e | | | Air with borated water leakage | Loss of material/
boric acid
corrosion | Chapter XI.M10, "Boric Acid
Corrosion" | No | | R-83 | IV.A2.4-
b | Nozzle safe ends
Inlet
Outlet
Safety injection | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy and
associated
welds and
buttering | Reactor coolant | corrosion cracking,
primary water
stress corrosion | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | A2 | Reactor Vessel (PWR) | | Item | l inv | Structure and/or
Component | Material | Environment | | Aging Management Program (AMP) | Further
Evaluation | |------|-------|--|-------------------------------------|-------------------------------------|--|--|------------------------| | R-81 | a | Nozzles
Inlet
Outlet
Safety injection | Steel with stainless steel cladding | Reactor coolant and neutron flux | toughness/ neutron
irradiation
embrittlement | Neutron irradiation embrittlement is a time-limited aging analysis (TLAA) to be evaluated for the period of license renewal for all ferritic materials that have a neutron fluence greater than 1017 n/cm2 (E >1 MeV) at the end of the license renewal term. The TLAA is to evaluate the impact of neutron embrittlement on: (a) the RTPTS value based on the requirements in 10 CFR 50.61, (b) the adjusted reference temperature, the plant's pressure-temperature limits, (c) the Charpy upper shelf energy, and (d) the equivalent margins analyses performed in accordance with 10 CFR 50, Appendix G. The applicant may choose to demonstrate that the materials in the inlet, outlet, and safety injection nozzles are not controlling for the TLAA evaluations. | Yes,
TLAA | | ₹-82 | ~ | Nozzles
Inlet
Outlet
Safety injection | | Reactor coolant
and neutron flux | Loss of fracture | Chapter XI.M31, "Reactor
Vessel Surveillance" | Yes, plant
specific | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|---------------|--|--------------|-----------------|---|---|------------------------| | R-90 | IV.A2.7-
b | Penetrations Head vent pipe (top head) Instrument tubes (top head) | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Order EA-03-009 or any subsequent regulatory requirements. | Yes, plant
specific | | R-89 | IV.A2.7-
a | Penetrations
Instrument tubes
(bottom head) | Nickel alloy | Reactor coolant | Cracking/ primary
water stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Bulletin BL-03-02 or any subsequent regulatory requirements. | Yes, plant
specific | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM A2 Reactor Vessel (PWR) | Item | Link | Structure and/or
Component | Material | Environment | | Aging Management Program (AMP) | Further
Evaluation | |------|--|---|--|------------------------------|-----------------|---|-----------------------| | R-04 | IV.A2.3-c
IV.A2.5-d
IV.A2.4-a
IV.A2.1-b | components, and piping elements | steel, cast
austenitic
stainless
steel, carbon
steel with
nickel-alloy or
stainless steel
cladding,
nickel-alloy | | damage/ fatigue | analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | | | R-91 | IV.A2.8-
a | Pressure vessel
support
Skirt support | Steel | Air – indoor
uncontrolled | | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1). | Yes,
TLAA | | tem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluatio | |------|-----------|--|--|-----------------|---------------------------------
--|----------------------| | ₹-85 | IV.A2.5-b | Vessel shell Upper shell Intermediate and lower shell (including beltline welds) | SA508-CI 2
forgings clad
with stainless
steel using a
high-heat-
input welding
process | Reactor coolant | Crack growth/
cyclic loading | Growth of intergranular separations (underclad cracks) in low-alloy steel forging heat affected zone under austenitic stainless steel cladding is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation for all the SA 508-Cl 2 forgings where the cladding was deposited with a high heat input welding process. The methodology for evaluating an underclad flaw is in accordance with the current wellestablished flaw evaluation procedure and criterion in the ASME Section XI Code. See the Standard Review Plan, Section 4.7, "Other Plant-Specific Time-Limited Aging Analysis," for generic guidance for meeting the requirements of 10 CFR 54.21(c). | | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM A2 Reactor Vessel (PWR) | Item | ll ink | Structure and/or
Component | Material | Environment | | Aging Management Program (AMP) | Further
Evaluation | |------|--------|--|-----------------|----------------------------------|--|--|------------------------| | R-84 | a | Vessel shell Upper shell Intermediate and lower shell (including beltline welds) | stainless steel | Reactor coolant and neutron flux | toughness/ neutron
irradiation
embrittlement | Neutron irradiation embrittlement is a time-limited aging analysis (TLAA) to be evaluated for the period of license renewal for all ferritic materials that have a neutron fluence of greater than 1017 n/cm2 (E >1 MeV) at the end of the license renewal term. The TLAA is to evaluate the impact of neutron embrittlement on: (a) the RTPTS value based on the requirements in 10 CFR 50.61, (b) the adjusted reference temperature, the plant's pressure temperature limits, (c) the Charpy upper shelf energy, and (d) the equivalent margins analyses performed in accordance with 10 CFR 50, Appendix G. See the Standard Review Plan, Section 4.2 "Reactor Vessel Neutron Embrittlement" for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes, plant
specific | | Item | Link | Structure and/or
Component | Material | | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | | | |------|---------------|---|-----------------|--|----------------------------|---|------------------------|--|--|--| | R-86 | IV.A2.5-
c | Vessel shell
Upper shell
Intermediate and lower
shell
(including beltline
welds) | stainless steel | | | Chapter XI.M31, "Reactor
Vessel Surveillance" | Yes, plant
specific | | | | | R-87 | | Vessel shell
Vessel flange | Steel | | wear | Chapter XI.M1, "ASME Section
XI Inservice Inspection,
Subsections IWB, IWC, and
IWD," for Class 1 components | No | | | | #### **B1.** REACTOR VESSEL INTERNALS (BOILING WATER REACTOR) #### Systems, Structures, and Components This section comprises the boiling water reactor (BWR) vessel internals and consists of the core shroud and core plate, the top guide, feedwater spargers, core spray lines and spargers, jet pump assemblies, fuel supports and control rod drive (CRD), and instrument housings, such as the intermediate range monitor (IRM) dry tubes, the low power range monitor (LPRM) dry tubes, and the source range monitor (SRM) dry tubes. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all structures and components that comprise the reactor vessel are governed by Group A or B Quality Standards. The steam separator and dryer assemblies are not part of the pressure boundary and are removed during each outage, and they are covered by the plant maintenance program. #### **System Interfaces** The systems that interface with the reactor vessel internals include the reactor pressure vessel (IV.A1) and the reactor coolant pressure boundary (IV.C1). | | ACTOR VESSE
actor Vessel Inte | EL, INTERNALS, AN
ernals (BWR) | D REACTOR | COOLANT SYST | EM | | | |------|----------------------------------|--|--------------------|-----------------|--|--|-----------------------| | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | R-95 | | Core shroud and core plate Access hole cover (mechanical covers) | Nickel alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components and
Chapter XI.M2, "Water
Chemistry," for BWR water in
BWRVIP-29 (EPRI
TR-103515) | No | | R-94 | | Core shroud and core plate Access hole cover (welded covers) | Nickel alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) Because cracking initiated in crevice regions is not amenable to visual inspection, for BWRs with a crevice in the access hole covers, an augmented inspection is to include ultrasonic testing (UT) or other demonstrated acceptable inspection of the access hole cover welds. | | | R-93 | IV.B1.1-
b | Core shroud and core plate Core plate Core plate Core plate bolts (used in early BWRs) | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M9, "BWR Vessel
Internals," for core plate and
Chapter XI.M2, "Water Chemistry"
for BWR water in BWRVIP-29
(EPRI
TR-103515) | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B1 | Reactor Vessel Internals (BWR) | | ltem | II ink | Structure and/or
Component | Material | Environment | | | Further
Evaluation | |------|---------------|---|--------------------|-----------------|---|------------------------------------|-----------------------| | | | | | | | | | | R-92 | IV.B1.1-
a | Core shroud and core plate Core shroud (upper, central, lower) | Stainless
steel | Reactor coolant | intergranular stress corrosion cracking, | Internals," for core shroud and | No | | R-96 | IV.B1.1-f | Core shroud and core plate Shroud support structure (shroud support cylinder, shroud support plate, shroud support legs) | Nickel alloy | Reactor coolant | intergranular stress
corrosion cracking,
irradiation-assisted | Internals," for shroud support and | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B1 | Reactor Vessel Internals (BWR) | | | | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|---------------|---|--------------------|-----------------|---|--|-----------------------| | R-97 | IV.B1.1-
g | Core shroud and core plate Shroud support structure (shroud support cylinder, shroud support plate, shroud support legs) | Stainless
steel | Reactor coolant | intergranular stress corrosion cracking, | Chapter XI.M9, "BWR Vessel
Internals," for the LPCI coupling
and
Chapter XI.M2, "Water
Chemistry," for BWR water in
BWRVIP-29 (EPRI
TR-103515) | No | | R-99 | IV.B1.3-
a | Core spray lines and spargers Core spray lines (headers) Spray rings Spray nozzles Thermal sleeves | Stainless
steel | Reactor coolant | intergranular stress corrosion cracking, | Internals," for core spray internals | No | | R-104 | IV.B1.5-
c | | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | Chapter XI.M9, "BWR Vessel
Internals," for lower plenum and
Chapter XI.M2, "Water
Chemistry," for BWR water in
BWRVIP-29 (EPRI
TR-103515) | No | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM B1 Reactor Vessel Internals (BWR) | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--|-----------------|---|--|-----------------------| | R-103 | IV.B1.5-
a | Fuel supports and control rod drive assemblies Orificed fuel support | Cast
austenitic
stainless
steel | Reactor coolant | Loss of fracture toughness/ thermal aging and neutron irradiation embrittlement | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | R-105 | IV.B1.6-
a | Instrumentation Intermediate range monitor (IRM) dry tubes Source range monitor (SRM) dry tubes Incore neutron flux monitor guide tubes | Stainless
steel | Reactor coolant | | Chapter XI. M9, "BWR Vessel Internals," for lower plenum and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) | No | | R-101 | | Jet pump
assemblies
Castings | Cast
austenitic
stainless
steel | Reactor coolant | 3 | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | R-102 | IV.B1.4-
d | Jet pump
assemblies
Jet pump sensing
line | Stainless
steel | Reactor coolant | Cracking/ cyclic loading | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | R1 | Reactor Vessel Internals (RWR) | | Item | ll ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | L .99 | Further
Evaluation | |-------|-----------|--|--|-----------------|--|--|-----------------------| | R-100 | а | Jet pump assemblies Thermal sleeve Inlet header Riser brace arm Holddown beams Inlet elbow Mixing assembly Diffuser Castings | Nickel alloy,
cast
austenitic
stainless
steel,
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Internals," for jet pump assembly | No | | R-53 | IV.B1.2-b | components | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Cumulative fatigue
damage/ fatigue | For components for which a fatigue analysis has been performed for the 40-year period, fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1). | Yes,
TLAA | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B1 | Reactor Vessel Internals (BWR) | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|----------|-------------------------------|--------------------|-----------------|----------------------------|---|-----------------------| | R-98 | IV.B1.2- | Top guide | Stainless
steel | Reactor coolant | | Chapter XI.M9, "BWR Vessel Internals," for top guide and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) For top guides with neutron fluence exceeding the IASCC threshold (5x1020, E>IMeV) inspect ten (10) percent of the top guide locations using enhanced visual inspection technique, EVT-1 within 12 years, one-half (5 percent) to be completed within 6 years. Locations selected for examination will be areas that have exceeded the neutron fluence threshold. The extent and frequency of examination of the top guide is similar to the examination of the control rod drive housing guide tube in BWRVIP-47. | | This Page Intentionally Left Blank # **B2. REACTOR VESSEL INTERNALS (PWR) - WESTINGHOUSE** ## **Systems, Structures, and Components** This section comprises the Westinghouse pressurized water reactor (PWR) vessel internals and consists of the upper internals assembly, the rod control cluster assemblies (RCCA) guide tube assemblies, the core barrel, the baffle/former assembly, the lower internal assembly, and the instrumentation support structures. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all structures and components that comprise the reactor vessel are governed by Group A or B Quality Standards. #### **System Interfaces** The systems that interface with the reactor vessel internals include the reactor pressure vessel (IV.A2). | ltem | II INK | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------|---|--------------------|-----------------|---|---|---| | R-124 | b | Baffle/former assembly Baffle and former plates | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-123 | а | Baffle/former assembly Baffle and former plates | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) | | to participate in
industry programs for investigating and managing aging effects applicable to Reactor industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. Internals, (2) to evaluate and implement the results of the IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM B2 Reactor Vessel Internals (PWR) - Westinghouse | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|------|---|--------------------|----------------------------------|--|---|---| | R-127 | е | Baffle/former assembly Baffle and former plates | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-126 | d | Baffle/former assembly Baffle/former bolts | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to | No, but
licensee
commitment to
be confirmed. | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|-------------------------------------|--|---|---|---| | R-125 | C. | Baffle/former assembly Baffle/former bolts | Stainless
steel | Reactor coolant
and high fluence
(>1 x 10E21
n/cm2 E
>0.1 MeV) | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | ₹-128 | | Baffle/former assembly Baffle/former bolts | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | R-129 | IV.B2.4-
h | Baffle/former assembly Baffle/former bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | A plant-specific aging management program is to be evaluated. Visual inspection (VT-3) is to be augmented to detect relevant conditions of stress relaxation because only the heads of the baffle/former bolts are visible, and a plant-specific aging management program is thus required. | specific | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--------------------|-----------------|---|---|---| | R-121 | IV.B2.3-b | Core barrel Core barrel (CB) CB flange (upper) CB outlet nozzles Thermal shield | Stainless
steel | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-120 | IV.B2.3-
a | Core barrel Core barrel (CB) CB flange (upper) CB outlet nozzles Thermal shield | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|----------|-------------------------------|-----------|------------------|----------------------------|---|-----------------------| | R-122 | IV.B2.3- | Core barrel | Stainless | Reactor coolant | Loss of fracture | Applicant must provide a | No, but | | | С | 0 1 1 (07) | steel | , | toughness/ neutron | commitment which includes the | licensee | | | | Core barrel (CB) | | and neutron flux | | following elements: (1) to | commitment to | | | | OD (1) | | | embrittlement, void | participate in industry programs for | be confirmed. | | | | CB flange (upper) | | | swelling | investigating and managing aging | | | | | CD outlet persion | | | | effects applicable to Reactor | | | | | CB outlet nozzles | | | | Internals, (2) to evaluate and implement the results of the | | | | | Thermal shield | | | | industry programs as applicable to | | | | | Thermal Shield | | | | the Reactor Internals design and, | | | | | | | | | (3) to submit, for NRC review and | | | | | | | | | approval an inspection plan for | | | | | | | | | Reactor Internals, as based on | | | | | | | | | industry recommendation, at least | | | | | | | | | 24 months prior to the extended | | | | | | | | | period. | | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|------|-------------------------------|---------------------------|-----------------|----------------------------|--|-----------------------| | R-145 | | | Material Stainless steel | Reactor coolant | 0 0 | | Evaluation
No | | | | | | | | wear of the thimble tubes. In addition, corrective actions include isolation or replacement if a thimble tube fails to meet the above acceptance criteria. Inspection schedule is in accordance with
the guidelines of I&E Bulletin 88-09. | 2 | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |---|----|---| | ا | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | II Inv | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------|---|--------------------|-----------------|---|---|---| | R-144 | b | Instrumentation support
structures
Flux thimble guide tubes | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-143 | а | Instrumentation support
structures
Flux thimble guide tubes | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|-----------|--|-------------------------------------|-----------------|---|---|---| | R-137 | IV.B2.5-i | Lower internal assembly
Clevis insert bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | No, but
licensee
commitment to
be confirmed. | | R-134 | IV.B2.5-f | Lower internal assembly Fuel alignment pins Lower support plate column bolts Clevis insert bolts | Stainless
steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | • | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | | | Ī | 1 | | | <u> </u> | | |-------|---------------|--|-------------------------------------|-------------------------------------|--|--|---| | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | | R-133 | IV.B2.5-
e | Lower internal assembly Fuel alignment pins Lower support plate column bolts Clevis insert bolts | Stainless
steel, nickel
alloy | Reactor coolant | corrosion cracking,
irradiation-assisted
stress corrosion
cracking | for PWR primary water in EPRI TR- 105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | commitment to
be confirmed. | | R-135 | IV.B2.5-
g | Lower internal assembly Fuel alignment pins Lower support plate column bolts Clevis insert bolts | Stainless
steel, nickel
alloy | Reactor coolant
and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | \ \ \ | No, but
licensee
commitment to
be confirmed. | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|--------------------|----------------------------------|--|-----|---| | R-132 | IV.B2.5-
c | Lower internal assembly
Lower core plate | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | | No, but
licensee
commitment to
be confirmed. | | R-131 | IV.B2.5-
b | Lower internal assembly
Lower core plate
Radial keys and clevis
inserts | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | , , | No, but
licensee
commitment to
be confirmed. | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|--|-----------------|---|---|--| | R-130 | IV.B2.5-
a | Lower internal assembly
Lower core plate
Radial keys and clevis
inserts | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-140 | IV.B2.5-
m | Lower internal assembly
Lower support casting
Lower support plate
columns | Cast
austenitic
stainless
steel | >250°C (>482°F) | Loss of fracture
toughness/ thermal
aging and neutron
irradiation
embrittlement, void | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | swelling | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-----------|--|--
----------------------------------|--|---|---| | R-141 | IV.B2.5- | Lower internal assembly
Lower support forging
Lower support plate
columns | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-139 | IV.B2.5-I | Lower internal assembly Lower support forging or casting Lower support plate columns | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|--|-----------------|---|-------------------------------|---| | R-138 | IV.B2.5-k | Lower internal assembly Lower support forging or casting Lower support plate columns | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | | licensee
commitment to
be confirmed. | | R-136 | IV.B2.5-
h | Lower internal assembly
Lower support plate
column bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | commitment which includes the | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|-------------------------------|-------------------------------------|-----------------|--|---|--| | R-142 | IV.B2.5-
o | | Stainless
steel | Reactor coolant | wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-118 | IV.B2.2-d | assemblies | Stainless
steel, nickel
alloy | Reactor coolant | corrosion cracking,
primary water stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | | licensee
commitment to
be confirmed. | R-117 IV.B2.2- RCCA guide tube assemblies RCCA guide tubes | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|-------------------------------------|-----------------|---|---|---| | R-119 | IV.B2.2-
e | RCCA guide tube
assemblies
RCCA guide tube bolts,
RCCA guide tube support
pins | Stainless
steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended | No, but
licensee
commitment to
be confirmed. | Reactor coolant Stainless steel Changes in swelling dimensions/Void period. period. Applicant must provide a following elements: (1) to commitment which includes the investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended participate in industry programs for be confirmed. No, but licensee commitment to | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|------|---|---|-----------------|---|---|--| | R-116 | а | RCCA guide tube
assemblies
RCCA guide tubes | Stainless
steel | | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-53 | | | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Cumulative fatigue
damage/ fatigue | For components for which a fatigue analysis has been performed for the 40-year period, fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1). | Yes,
TLAA | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|-------------------------------|-------------------------------------|-----------------|---------------------------------------|---|---| | R-108 | IV.B2.1-
d | 1 | Stainless
steel | Reactor coolant | Loss of preload/
stress relaxation | commitment which includes the following elements: (1) to | No, but
licensee
commitment to
be confirmed. | | R-115 | IV.B2.1-I | | Stainless
steel, nickel
alloy | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class
1
components | No | | ľ | V | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |---|----|---| | ŀ | 32 | Reactor Vessel Internals (PWR) - Westinghouse | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------|--|--|-----------------|---|---|---| | R-110 | | Upper internals assembly
Upper support column | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-109 | | Upper internals assembly
Upper support column | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|--|-----------------|---|---|---| | R-111 | IV.B2.1-
g | Upper internals assembly
Upper support column
(only cast austenitic
stainless steel portions) | Cast
austenitic
stainless
steel | | Loss of fracture
toughness/ thermal
aging and neutron
irradiation
embrittlement, void
swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | R-114 | IV.B2.1-
k | Upper internals assembly Upper support column bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | 14 | | Structure and/or | B. G. A. L. L. L. | Fundana | Aging Effect/ | Aging Management Program | Further | |-------|--------|---|-------------------------------------|-----------------|--|---|---| | Item | II ink | Component | Material | Environment | Mechanism | (AMP) | Evaluation | | R-113 | , | Upper internals assembly
Upper support column
bolts Upper core plate
alignment pins
Fuel alignment pins | Stainless
steel, nickel
alloy | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-112 | | Upper internals assembly Upper support column bolts Upper core plate alignment pins Fuel alignment pins | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
primary water stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B2 | Reactor Vessel Internals (PWR) - Westinghouse | | | . , , | | Item | II Inv | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------|---|--------------------|-----------------|---|---|---| | R-107 | b | Upper internals assembly
Upper support plate
Upper core plate
Hold-down spring | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-106 | а | Upper internals assembly
Upper
support plate
Upper core plate
Hold-down spring | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | ## **B3. REACTOR VESSEL INTERNALS (PWR) - COMBUSTION ENGINEERING** # **Systems, Structures, and Components** This section comprises the Combustion Engineering pressurized water reactor (PWR) vessel internals and consists of the upper internals assembly, the CEA shroud assemblies, the core support barrel, the core shroud assembly, and the lower internal assembly. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all structures and components that comprise the reactor vessel are governed by Group A or B Quality Standards. #### **System Interfaces** The systems that interface with the reactor vessel internals include the reactor pressure vessel (IV.A2). | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--|-----------------|---|---|-----------------------| | R-153 | IV.B3.2-
e | CEA Shroud
Assemblies | Cast
austenitic
stainless
steel | | Loss of fracture toughness/ thermal aging and neutron irradiation embrittlement, void swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | R-149 | a | CEA Shroud
Assemblies | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | R-152 | IV.B3.2-
d | CEA shroud
assemblies
CEA shroud
extension shaft
guides | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|---|---|-----------------|--|---|-----------------------| | R-151 | IV.B3.2-
c | CEA Shroud
Assemblies
CEA shrouds bolts | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | commitment which includes the following elements: (1) to | | | R-150 | IV.B3.2-b | CEA Shroud
Assemblies
CEA shrouds bolts | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress corrosion cracking, primary water stress corrosion cracking, irradiation-assisted stress corrosion cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|-------------------------------------|-------------------------------------|--|---|-----------------------| | R-154 | IV.B3.2-
g | CEA Shroud
Assemblies
CEA shrouds bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | commitment which includes the following elements: (1) to | | | R-161 | IV.B3.4-
c | Core barrel assembly Core barrel cylinder (top and bottom flange) Lower internals assembly-to- core barrel bolts Core barrel-to-thermal shield bolts Baffle plates and formers | | Reactor coolant
and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|-------------------------------------|-----------------|--|---|-----------------------| | R-163 | IV.B3.4-1 | Core shroud
assembly
Core shroud
assembly bolts
(later plants are
welded) | Stainless
steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | R-162 | IV.B3.4-
e | Core shroud
assembly
Core shroud
assembly bolts
(later plants are
welded)
| Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress corrosion cracking, primary water stress corrosion cracking, irradiation-assisted stress corrosion cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|-------------------------------------|-------------------------------------|--|---|-----------------------| | R-164 | IV.B3.4-
g | Core shroud
assembly
Core shroud
assembly bolts
(later plants are
welded) | Stainless
steel, nickel
alloy | Reactor coolant
and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | | | | R-165 | IV.B3.4-
h | Core shroud assembly Core shroud assembly bolts Core shroud tie rods | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|---|---|-----------------|---|---|-----------------------| | R-159 | IV.B3.4-
a | assembly Core shroud tie | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | R-160 | IV.B3.4-
b | Core shroud assembly Core shroud tie rods (core support plate attached by welds in later plants) | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | II Inv | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|----------|-----------------|---|---|-----------------------| | R-158 | IV.B3.3-
b | Core support barrel
Core support barrel
upper flange | | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | R-155 | IV.B3.3- | Core support barrel
Core support barrel
upper flange | | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--|-------------------------------------|--|---|-----------------------| | R-157 | IV.B3.3-
a | Core support barrel
Core support barrel
upper flange | Stainless
steel | Reactor coolant
and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on
industry recommendation, at least 24 months prior to the extended period. | | | R-156 | b | Core support barrel Core support barrel upper flange Core support barrel alignment keys | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-171 | | Lower internal
assembly
Core support
column | Cast
austenitic
stainless
steel | | Loss of fracture toughness/ thermal aging and neutron irradiation embrittlement, void swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|----------|-----------------|-------------------------------------|---|-----------------------| | R-168 | IV.B3.5-
c | Lower internal assembly Core support plate Fuel alignment pins Lower support structure beam assemblies Core support column Core support column bolts Core support barrel snubber assemblies | | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|----------|----------------------------------|--|---|-----------------------| | R-169 | IV.B3.5-
d | Lower internal assembly Core support plate Fuel alignment pins Lower support structure beam assemblies Core support column bolts Core support barrel snubber assemblies | | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | 1 | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B3 | Reactor Vessel Internals (PWR) - Combustion Engineering | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | - 99 | Further
Evaluation | |-------|---------------|---|-------------------------------------|-----------------|---|---|-----------------------| | R-166 | IV.B3.5-
a | Lower internal assembly Core support plate Lower support structure beam assemblies Core support column Core support barrel snubber assemblies | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chemistry," for PWR primary water in EPRI TR-105714 and the | be confirmed. | | R-170 | IV.B3.5-
e | | Stainless
steel, nickel
alloy | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM B3 Reactor Vessel Internals (PWR) - Combustion Engineering | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|-------------------------------------|---|-----------------|---|---|-----------------------| | R-167 | IV.B3.5-
b | | Stainless
steel, nickel
alloy | Reactor coolant | primary water stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | | R-54 | IV.B3.5-g | Reactor vessel internals components | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | | | Yes,
TLAA | | ltem | Link | Structure and/or Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--------------------|-----------------|-------------------------------------|---|-----------------------| | R-148 | IV.B3.1-
c | Upper Internals Assembly Fuel alignment plate Fuel alignment plate guide lugs and their lugs Hold-down ring | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-147 | IV.B3.1-
b | Upper Internals Assembly Upper guide structure support plate Fuel alignment plate Fuel alignment plate guide lugs and guide lug inserts | Stainless
steel | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | B3 Rea | Link | ernals (PWR) - Com Structure and/or Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |--------|---------------
---|--------------------|-----------------|---|---|-----------------------| | R-146 | IV.B3.1-
a | Upper Internals Assembly Upper guide structure support plate Fuel alignment plate Fuel alignment plate guide lugs and guide lug inserts | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | be confirmed. | This Page Intentionally Left Blank ## B4. REACTOR VESSEL INTERNALS (PWR) - BABCOCK AND WILCOX # **Systems, Structures, and Components** This section comprises the Babcock and Wilcox pressurized water reactor (PWR) vessel internals and consists of the plenum cover and plenum cylinder, the upper grid assembly, the control rod guide tube (CRGT) assembly, the core support shield assembly, the core barrel assembly, the lower grid assembly, and the flow distributor assembly. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all structures and components that comprise the reactor vessel are governed by Group A or B Quality Standards. #### **System Interfaces** The systems that interface with the reactor vessel internals include the reactor pressure vessel (IV.A2). | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|---|--|--|---|---|---| | R-125 | a | Baffle/former assembly Baffle/former bolts | Stainless
steel | Reactor coolant
and high fluence
(>1 x 10E21
n/cm2 E
>0.1 MeV) | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-180 | а | Control rod guide tube (CRGT) assembly CRGT pipe and flange CRGT spacer casting CRGT rod guide tubes CRGT rod guide sectors | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | ltem | link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | - 99 | Further
Evaluation | |-------|------|--|--|-----------------|---|---|---| | R-182 | С | Control rod guide tube (CRGT) assembly CRGT pipe and flange CRGT spacer casting CRGT spacer screws Flange-to-upper grid screws CRGT rod guide tubes CRGT rod guide sectors | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-183 | d | Control rod guide tube (CRGT) assembly CRGT spacer casting | Cast
austenitic
stainless
steel | | Loss of fracture
toughness/ thermal
aging and neutron
irradiation
embrittlement, void
swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|---|--------------------|-----------------|---|---|---| | R-181 | IV.B4.3-
b | Control rod guide tube (CRGT) assembly CRGT spacer screws Flange-to-upper grid screws | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-184 | IV.B4.3-
e | Control rod guide tube (CRGT) assembly Flange-to-upper grid screws | Stainless
steel | Reactor coolant | Loss of preload/
stress relaxation | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging
effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|--------------------|-----------------|-------------------------------------|---|-----------------------| | R-199 | IV.B4.5-
h | Core barrel assembly Baffle/former bolts and screws | Stainless
steel | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|------|--|--------------------|-----------------|---|--|------------------------| | R-198 | a | Core barrel assembly Baffle/former bolts and screws | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | A plant-specific aging management program is to be evaluated. Historically the VT-3 visual examinations have not identified baffle/former bolt cracking because cracking occurs at the juncture of the bolt head and shank, which is not accessible for visual inspection. However, recent UT examinations of the baffle/former bolts have identified cracking in several plants. The industry is currently addressing the issue of baffle bolt cracking in the PWR Materials Reliability Project, Issues Task Group (ITG) activities to determine, develop, and implement the necessary steps and plans to manage the applicable aging effects on a plant-specific basis. | Yes, plant
specific | | R-201 | | Core barrel assembly Baffle/former bolts and screws | Stainless
steel | Reactor coolant | Loss of preload/
stress relaxation | A plant-specific aging management program is to be evaluated. Visual inspection (VT-3) is to be augmented to detect relevant conditions of stress relaxation because only the heads of the baffle/former bolts are visible, and a plant-specific aging management program is thus required. | Yes, plant
specific | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-----------|---|--------------------|----------------------------------|---|---|--| | R-200 | IV.B4.5-i | Core barrel assembly Baffle/former bolts and screws | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | R-193 | IV.B4.5- | Core barrel assembly Core barrel cylinder (top and bottom flange) Baffle plates and formers | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|-------------------------------------|-------------|--|--|---| | R-195 | С | Core barrel cylinder (top and bottom flange) Lower internals assembly-to- core barrel bolts Core barrel-to-thermal shield bolts Baffle plates and formers | Stainless
steel, nickel
alloy | | Changes in
dimensions/Void
swelling | commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-196 | IV.B4.5-
d | , | Stainless
steel, nickel
alloy | | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | commitment which includes the | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|-------------------------------|-------------------------------------|-----------------|---|---|---| | R-194 | IV.B4.5-b | | Stainless
steel, nickel
alloy |
Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-197 | IV.B4.5-
e | 1 | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | II . | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | | | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|---|---|----------------------------------|--|---|---| | R-190 | | | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-188 | d | assembly
Core support shield
cylinder (top and bottom | Stainless
steel, nickel
alloy, PH
Stainless
Steel forging | Reactor coolant and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | | No, but
licensee
commitment to
be confirmed. | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|---|---|-----------------|---|---|---| | R-187 | IV.B4.4-
C | assembly Core support shield cylinder (top and bottom | Stainless
steel, nickel
alloy, PH
Stainless
Steel forging | Reactor coolant | Changes in
dimensions/Void
swelling | | No, but
licensee
commitment to
be confirmed. | | R-185 | IV.B4.4-
a | Core support shield cylinder (top and bottom | Stainless
steel, PH
stainless
steel forging,
CASS | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|--|-------------------------------------|-----------------|---|---|---| | R-192 | | Core support shield
assembly
Core support shield-to-
core barrel bolts | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | R-186 | b | Core support shield assembly Core support shield-to-core barrel bolts VV assembly locking device | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | Item | II INK | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|----------|---|--|-----------------|---|--|---| | R-191 | g | Outlet and vent valve | Cast
austenitic
stainless
steel | >250°C (>482°F) | Loss of fracture
toughness/ thermal
aging and neutron
irradiation
embrittlement, void
swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | R-209 | IV.B4.7- | Flow distributor assembly
Flow distributor head and
flange
Incore guide support plate
Clamping ring | steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1 to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment t
be confirmed. | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|---|------------------------|-------------------------------------|--
---|---| | R-212 | d | Flow distributor assembly
Flow distributor head and
flange
Shell forging-to-flow
distributor bolts
Incore guide support plate
Clamping ring | steel, nickel
alloy | Reactor coolant
and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | commitment which includes the | No, but
licensee
commitment to
be confirmed. | | R-211 | С | Flow distributor assembly Flow distributor head and flange Shell forging-to-flow distributor bolts Incore guide support plate Clamping ring | steel, nickel
alloy | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | II ink | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|-------------------------------|-------------------------------------|-----------------|---|---|---| | R-210 | | distributor bolts | steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-213 | е | Shell forging-to-flow | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | commitment which includes the | No, but
licensee
commitment to
be confirmed. | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|---------------|---|--|-----------------|---|--|-----------------------| | R-208 | IV.B4.6-
h | Lower grid assembly
Fuel assembly support
pads Guide blocks | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-206 | IV.B4.6-
e | Lower grid assembly
Incore guide tube spider
castings | Cast
austenitic
stainless
steel | >250°C (>482°F) | Loss of fracture
toughness/ thermal
aging and neutron
irradiation
embrittlement, void
swelling | Chapter XI.M13, "Thermal Aging
and Neutron Irradiation
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | Item | II INK | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------|---|--|-----------------|---|----------------------------------|--| | R-202 | а | Lower grid rib section
Fuel assembly support | Stainless
steel, cast
austenitic
stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | TR-105714 and the applicant must | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | II INK | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------|---|---|-----------------|-------------------------------------|---|---| | R-204 | C | Lower grid rib section Fuel assembly support pads Lower grid rib-to-shell | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Changes in dimensions/Void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|-----------|---|-------------------------------------|----------------------------------|--|---|--| | R-205 | IV.B4.6-d | Lower grid assembly Lower grid rib section Fuel assembly support pads Lower grid rib-to-shell forging screws Lower grid flow dist. plate Orifice plugs Lower grid and shell forgings Lower internals assembly- to-thermal shield bolts Guide blocks and bolts Shock pads and bolts Support post pipes | Stainless
steel, nickel
alloy | Reactor coolant and neutron flux | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | Applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | No, but licensee commitment to be
confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|-------------------------------|-------------------------------------|-----------------|---|---|---| | R-203 | IV.B4.6-b | | Stainless
steel, nickel
alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-207 | IV.B4.6-
g | | Stainless
steel, nickel
alloy | Reactor coolant | Loss of preload/
stress relaxation | Applicant must provide a commitment which includes the | No, but
licensee
commitment to
be confirmed. | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|--|--------------------|-----------------|---|---|---| | R-172 | IV.B4.1-
a | Plenum cover and plenum
cylinder
Plenum cover assembly
Plenum cylinder
Reinforcing plates | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-174 | С | Plenum cover and plenum cylinder Plenum cover assembly Plenum cylinder Reinforcing plates Top flange-to-cover bolts Bottom flange-to-upper grid screws | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | ltem | link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | F -99 | Further
Evaluation | |-------|------|--|---|-----------------|---|---|--| | R-173 | b | Top flange-to-cover bolts
Bottom flange-to-upper
grid screws | steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-54 | | components | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy | Reactor coolant | Cumulative fatigue
damage/ fatigue | For components for which a fatigue analysis has been performed for the 40-year period, fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|---------------|-------------------------------------|---|-----------------|---|--|---| | R-189 | IV.B4.4-
e | Reactor vessel internals components | Stainless
steel, cast
austenitic
stainless
steel, nickel
alloy, PH
Stainless
Steel forging | Reactor coolant | Cumulative fatigue
damage/ fatigue | For components for which a fatigue analysis has been performed for the 40-year period, fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | | | R-215 | IV.B4.8-
b | Thermal shield | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the | No, but
licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|-------------------------------|--------------------|----------------------------------|---|---|--| | R-216 | IV.B4.8-
c | Thermal shield | Stainless
steel | Reactor coolant and neutron flux | Loss of fracture
toughness/ neutron
irradiation
embrittlement, void
swelling | Applicant must provide a commitment which includes the following elements: (1) to
participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | | | R-214 | IV.B4.8-
a | Thermal shield | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | ltem | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|--------------------|-----------------|---|---|---| | R-179 | IV.B4.2-f | Upper grid assembly
Fuel assembly support
pads Plenum rib pads | Stainless
steel | Reactor coolant | Loss of material/
wear | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components | No | | R-176 | IV.B4.2-
b | Upper grid assembly
Rib- to-ring screws | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on | licensee
commitment t
be confirmed. | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | B4 | Reactor Vessel Internals (PWR) – Babcock & Wilcox | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | ggaageeg. a | Further
Evaluation | |-------|---------------|--|--------------------|-----------------|---|---|---| | R-175 | IV.B4.2-
a | Upper grid assembly Upper grid rib section Upper grid ring forging Fuel assembly support pads Plenum rib pads | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking,
irradiation-assisted
stress corrosion
cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and the applicant must provide a commitment which includes the following elements: (1) to participate in industry programs for investigating and managing aging effects applicable to Reactor Internals, (2) to evaluate and implement the results of the industry programs as applicable to the Reactor Internals design and, (3) to submit, for NRC review and approval an inspection plan for Reactor Internals, as based on industry recommendation, at least 24 months prior to the extended period. | licensee
commitment to
be confirmed. | | R-177 | IV.B4.2-
c | Upper grid assembly Upper grid rib section Upper grid ring forging Fuel assembly support pads Plenum rib pads Rib-to-ring screws | Stainless
steel | Reactor coolant | Changes in
dimensions/Void
swelling | Applicant must provide a commitment which includes the | No, but
licensee
commitment to
be confirmed. | | Item | Link | Structure and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|---------------|--|--------------------|-----------------|--|--------------------------------|-----------------------| | R-178 | IV.B4.2-
e | Upper grid assembly Upper grid rib section Upper grid ring forging Fuel assembly support pads Plenum rib pads Rib-to-ring screws | Stainless
steel | Reactor coolant | Loss of fracture toughness/ neutron irradiation embrittlement, void swelling | following elements: (1) to | | This Page Intentionally Left Blank ### C1. REACTOR COOLANT PRESSURE BOUNDARY (BOILING WATER REACTOR) ## Systems, Structures, and Components This section comprises the boiling water reactor (BWR) primary coolant pressure boundary and consists of the reactor coolant recirculation system and portions of other systems connected to the pressure vessel extending to the second containment isolation valve or to the first anchor point outside containment. The connected systems include the residual heat removal (RHR), low–pressure core spray (LPCS), high–pressure core spray (HPCS), low–pressure coolant injection (LPCI), reactor core isolation cooling (RCIC), isolation condenser (IC), reactor water cleanup (RWC), standby liquid control system (SLC), feedwater (FW), and main steam (MS) systems, and the steam line to the HPCI and RCIC pump turbines. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all systems, structures, and components that comprise the reactor coolant pressure boundary are governed by Group A Quality Standards. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Therefore, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). ### **System Interfaces** The systems that interface with the reactor coolant pressure boundary include the reactor pressure vessel (IV.A1), the emergency core cooling system (V.D2), the standby liquid control system (VII.E2), the reactor water cleanup system (VII.E3), the shutdown cooling system (older plants) (VII.E4), the main steam system (VIII.B2), and the feedwater system (VIII.D2). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|-----------|---|---------------------------|-----------------|---|--|-----------------------| | R-03 | IV.C1.1-i | Class 1 piping,
fittings and
branch
connections <
NPS 4 | Stainless
steel, Steel | Reactor coolant | Cracking/ stress corrosion cracking and intergranular stress corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) Inspection in accordance with ASME Section XI does not require volumetric examination of pipes less than NPS 4. A plant-specific destructive examination or a
nondestructive examination of the inside surfaces of the piping is to be conducted to ensure that cracking has not occurred and the component intended function will be maintained during the extended period of operation. | | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM C1 Reactor Coolant Pressure Boundary (BWR) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|---------------|--|---------------------------------------|------------------------------------|--|---|-----------------------| | R-55 | | Class 1 piping, fittings and branch connections < NPS 4 | Stainless
steel, Steel | Reactor coolant | Cracking/ thermal and mechanical loading | Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components Inspection in accordance with ASME Section XI does not require volumetric examination of pipes less than NPS 4. A plant-specific destructive examination or a nondestructive examination (NDE) that permits inspection of the inside surfaces of the piping is to be conducted to ensure that cracking has not occurred and the component intended function will be maintained during the extended period of operation. The AMPs are to be augmented by verifying that service-induced weld cracking is not occurring in the small-bore piping less than NPS 4, including pipe, fittings, and branch connections. See Chapter XI.M32, "One-Time Inspection" for an acceptable verification method. | | | R-52 | IV.C1.1-
g | Class 1 piping,
piping
components,
and piping
elements | Cast
austenitic
stainless steel | Reactor coolant
>250°C (>482°F) | | Chapter XI.M12, "Thermal Aging
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | | | L, INTERNALS
essure Bounda | | OR COOLANT SY | STEM | | | |------|------|---|--------------------------------------|---------------|---|---|-----------------------| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | | R-08 | | Class 1 pump
casings, and
valve bodies
and bonnets | Cast
austenitic
stainless stee | , | Loss of fracture
toughness/ thermal
aging embrittlement | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components For pump casings and valve bodies, screening for susceptibility to thermal aging is not required. The ASME Section XI inspection requirements are sufficient for managing the effects of loss of fracture toughness due to thermal aging embrittlement of CASS pump casings and valve bodies. Alternatively, the requirements of ASME Code Case N-481 for pump casings, are sufficient for managing the effects of loss of fracture toughness due to thermal aging embrittlement of CASS pump casings. | | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM C1 Reactor Coolant Pressure Boundary (BWR) | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Further
Evaluation | |------|----------|----------------------------------|---------------------------|-----------------|---|-----------------------| | R-15 | IV.C1.4- | _ | Stainless
steel, Steel | Reactor coolant | Cracking/ stress corrosion cracking and intergranular stress corrosion cracking | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | C1 | Reactor Coolant Pressure Boundary (BWR) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|-----------|---|---------------------------|-----------------|--|--|-----------------------| | ₹-16 | IV.C1.4-b | Isolation
condenser tube
side
components | Stainless
steel, Steel | Reactor coolant | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP in Chapter XI.M1 is to be augmented to detect cracking due to stress corrosion cracking and cyclic loading or loss of material due to pitting and crevice corrosion, and verification of the effectiveness of the program is required to ensure that significant degradation is not occurring and the component intended function will be maintained during the extended period of operation. An acceptable verification program is to include temperature and radioactivity monitoring of the shell side water, and eddy current | | | ₹-23 | IV.C1.1-a | Piping, piping components, and piping elements | Steel | Reactor coolant | Wall thinning/ flow-
accelerated
corrosion | testing of tubes. Chapter XI.M17, "Flow-Accelerated Corrosion" | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | C1 | Reactor Coolant Pressure Boundary (BWR) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|------------------------|---|--|-----------------|---|---|-----------------------| | R-04 | IV.C1.1-h
IV.C1.2-a | | Steel,
stainless
steel, cast
austenitic
stainless
steel, carbon
steel with
nickel-alloy or
stainless stee
cladding,
nickel-alloy | | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | | | R-21 | IV.C1.1-1 | Piping, piping components, and piping elements greater than or equal to 4 NPS | Nickel alloy | Reactor coolant | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | Chapter XI.M7, "BWR Stress
Corrosion Cracking" and
Chapter XI.M2, "Water Chemistry,"
for BWR water in BWRVIP-29
(EPRI
TR-103515) | No | | R-22 | IV.C1.3-c
IV.C1.1-f | Piping, piping components, and piping elements greater than or equal to 4 NPS | Stainless
steel | Reactor coolant | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | | No | R-29 | Item |
Link | Structure
and/or
Component | Material | | Aging Effect/
Mechanism | F -99 | Further
Evaluation | |------|-----------|---|---|--|---|--|-----------------------| | R-20 | IV.C1.3-c | Piping, piping components, and piping elements greater than or equal to 4 NPS | Stainless
steel, cast
austenitic
stainless steel | | Cracking/ stress
corrosion cracking
and intergranular
stress corrosion
cracking | Chapter XI.M7, "BWR Stress
Corrosion Cracking" and
Chapter XI.M2, "Water Chemistry,"
for BWR water in BWRVIP-29
(EPRI
TR-103515) | No | | R-27 | | Pump and
valve closure
bolting | | System
temperature up to
288°C (550°F) | Loss of preload/
stress relaxation | | No | | R-28 | | Pump and
valve closure
bolting | | System
temperature up to
288°C (550°F) | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation; check Code limits for allowable cycles (less than 7000 cycles) of thermal stress range. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | R-26 | | Pump and valve closure | | System temperature up to | Loss of material/
wear | Chapter XI.M18, "Bolting Integrity" | No | temperature up to wear 288°C (550°F) temperature up to wear 288°C (550°F) Loss of material/ Air with metal Chapter XI.M18, "Bolting Integrity" bolting Stainless steel, Steel IV.C1.3-e Pump and IV.C1.2-d valve seal flange closure bolting # C2. REACTOR COOLANT SYSTEM AND CONNECTED LINES (PRESSURIZED WATER REACTOR) ### Systems, Structures, and Components This section comprises the pressurized water reactor (PWR) primary coolant pressure boundary and consists of the reactor coolant system and portions of other connected systems generally extending up to and including the second containment isolation valve or to the first anchor point and including the containment isolation valves, the reactor coolant pump, valves, pressurizer, and the pressurizer relief tank. The connected systems include the residual heat removal (RHR) or low pressure injection system, high pressure injection system, sampling system, and the small-bore piping. With respect to other systems such as the core flood spray (CFS) or the safety injection tank (SIT) and the chemical and volume control system (CVCS), the isolation valves associated with the boundary between ASME Code class 1 and 2 are located inside the containment. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," and with the exception of the pressurizer relief tank, which is governed by Group B Quality Standards, all systems, structures, and components that comprise the reactor coolant system are governed by Group A Quality Standards. The recirculating pump seal water heat exchanger is discussed in V.D1. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Therefore, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). ### **System Interfaces** The systems that interface with the reactor coolant pressure boundary include the reactor pressure vessel (IV.A2), the steam generators (IV.D1 and IV.D2), the emergency core cooling system (V.D1), and the chemical and volume control system (VII.E1). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|------|---|-----------------|-----------------|-------------------------------------|--|-----------------------| | R-02 | | Class 1 piping,
fittings and
branch
connections <
NPS 4 | Stainless steel | Reactor coolant | Cracking/ stress corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 Inspection in accordance with ASME Section XI does not require volumetric examination of pipes less than NPS 4. A plant-specific destructive examination or a nondestructive examination (NDE) that permits inspection of the inside surfaces of the piping is to be conducted to ensure that cracking has not occurred and the component intended function will be maintained during the extended period of operation | evaluated | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM C2 Reactor Coolant System and Connected Lines (PWR) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|------------------------|---|--|-----------------|---|---|--| | R-57 | IV.C2.1-g | Class 1 piping, fittings and branch connections < NPS 4 | Stainless
steel/ steel
with stainless
steel cladding | Reactor coolant | Cracking/ thermal and mechanical loading | examination of pipes less than NPS 4. A plant-specific destructive examination or a nondestructive examination (NDE) that permits inspection of the inside surfaces of the piping is to be conducted to ensure that cracking has not occurred and the component intended function will be maintained during the extended period of operation. The AMPs are to be augmented by verifying that service-induced weld cracking is not occurring in the small-bore piping less than NPS 4, including pipe, fittings, and branch connections. See Chapter XI.M32, "One-Time Inspection" for an acceptable verification method. | monitored/
inspected and
detection of
aging effects
are to be
evaluated | | R-07 | IV.C2.5-h
IV.C2.5-m | Class 1 piping, fittings and primary nozzles, safe ends, manways, and flanges | Stainless
steel, steel
with stainless
steel or nickel-
alloy cladding,
nickel-alloy | Reactor coolant | Cracking/ stress
corrosion cracking,
primary water stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluatio | |------|-----------|--|------------------------------------|------------------------------------|---|--|----------------------| | R-05 | IV.C2.1-e | Class 1 piping, piping components, and piping elements | Cast austenitic
stainless steel | Reactor coolant | Cracking/ stress
corrosion cracking | Monitoring and control of primary water chemistry in accordance with the guidelines in EPRI TR-105714 (Rev. 3 or later revisions or update) minimize the potential of SCC, and material selection according to the NUREG-0313, Rev. 2
guidelines of ≤0.035% C and ≥7.5% ferrite has reduced susceptibility to SCC. For CASS components that do not meet either one of the above guidelines, a plant-specific aging management program is to be evaluated. The program is to include (a) adequate inspection methods to ensure detection of cracks, and (b) flaw evaluation methodology for CASS components that are susceptible to thermal aging embrittlement. | specific | | R-52 | IV.C2.5-I | Class 1 piping,
piping
components,
and piping
elements | | Reactor coolant
>250°C (>482°F) | Loss of fracture
toughness/ thermal
aging embrittlement | Chapter XI.M12, "Thermal Aging
Embrittlement of Cast Austenitic
Stainless Steel (CASS)" | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |------|------|---|---|-----------------|--|---|-----------------------| | R-09 | | Class 1 pump
casings and
valve bodies | CASS, carbon
steel with
stainless steel
cladding | Reactor coolant | Cracking/ stress
corrosion cracking | Monitoring and control of primary water chemistry in accordance with the guidelines in EPRI TR-105714 (Rev. 3 or later revisions or update) minimize the potential of SCC, and material selection according to the NUREG-0313, Rev. 2 guidelines of ≤0.035% C and ≥7.5% ferrite has reduced susceptibility to SCC. For CASS components that do not meet either one of the above guidelines, see Chapter XI.M1, "ASME Section XI, Subsections IWB, IWC, and IWD." | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | C2 | Reactor Coolant System and Connected Lines (PWR) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|-------------------------------------|---|----------|------------------------------------|---|---|-----------------------| | R-08 | | Class 1 pump
casings, and
valve bodies
and bonnets | | Reactor coolant
>250°C (>482°F) | Loss of fracture
toughness/ thermal
aging embrittlement | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections IWB,
IWC, and IWD," for Class 1
components | No | | | | | | | | For pump casings and valve bodies, screening for susceptibility to thermal aging is not required. The ASME Section XI inspection requirements are sufficient for managing the effects of loss of fracture toughness due to thermal aging embrittlement of CASS pump casings and valve bodies. Alternatively, the requirements of ASME Code Case N-481 for pump casings, are sufficient for managing the effects of loss of fracture toughness due to thermal aging embrittlement of CASS pump casings. | | | R-11 | IV.C2.3-e
IV.C2.5-n
IV.C2.4-e | | | Air with reactor coolant leakage | Cracking/ stress
corrosion cracking | Chapter XI.M18, "Bolting Integrity" | No | | R-12 | IV.C2.5-p
IV.C2.3-g
IV.C2.4-g | Closure bolting | | Air with reactor coolant leakage | Loss of preload/
stress relaxation | Chapter XI.M18, "Bolting Integrity" | No | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|--|---|---------------------------|--|---|---|-----------------------| | R-17 | IV.C2.1-d
IV.C2.5-b
IV.C2.2-d
IV.C2.6-b
IV.C2.5-u
IV.C2.5-o
IV.C2.3-f
IV.C2.4-f | surfaces | Steel | Air with borated water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | R-18 | IV.C2.4-d
IV.C2.5-w
IV.C2.5-t | Piping and components external surfaces and bolting | Stainless
steel, Steel | System temperature up to 340°C (644°F) | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii). See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | C2 | Reactor Coolant System and Connected Lines (PWR) | | Item | Link | Structure
and/or
Component | | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |------|---------------|----------------------------------|---|--|-----------------------------|---|------------------------| | R-04 | IV.C2.5-d | components,
and piping | Steel,
stainless steel,
cast austenitic
stainless steel,
carbon steel
with nickel-
alloy or
stainless steel
cladding,
nickel-alloy | Reactor coolant | | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | | | R-19 | IV.C2.5-
v | Pressurizer
Integral support | steel, Steel | Air with metal
temperature up to
288°C (550°F) | Cracking/ cyclic
loading | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections IWB,
IWC, and IWD," for Class 1
components | No | | R-24 | IV.C2.5-j | Pressurizer
Spray head | Nickel alloy,
cast austenitic
stainless steel,
stainless steel | Reactor coolant | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM C2 Reactor Coolant System and Connected Lines (PWR) | | |--|--| |--|--| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|------|----------------------------------|---|-----------------|--|--|-----------------------| | R-58 | | Pressurizer
components | Steel with stainless steel or nickel alloy cladding; or stainless steel | Reactor coolant | Cracking/ cyclic loading | Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 Cracks in the pressurizer
cladding could propagate from cyclic loading into the ferrite base metal and weld metal. However, because the weld metal between the surge nozzle and the vessel lower head is subjected to the maximum stress cycles and the area is periodically inspected as part of the ISI program, the existing AMP is adequate for managing the effect of pressurizer clad cracking. | | | R-25 | | Pressurizer
components | Steel with
stainless steel
or nickel alloy
cladding; or
stainless steel | Reactor coolant | Cracking/ stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | C2 | Reactor Coolant System and Connected Lines (PWR) | | | | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Adina Manadamant Program (AMP) | Further
Evaluation | |------|---------------|--|---|--|---------------------------------------|---|------------------------| | R-06 | | Pressurizer instrumentation penetrations and heater sheaths and sleeves | Nickel alloy | Reactor coolant | cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Bulletin BL-04-01 or any subsequent regulatory requirements. | Yes, plant
specific | | R-14 | IV.C2.6-
c | Pressurizer
relief tank
Tank shell and
heads
Flanges and
nozzles | Stainless
steel/ steel
with stainless
steel cladding | Treated borated
water >60°C
(>140°F) | corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 2 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | | R-13 | IV.C2.6-
a | Pressurizer
relief tank
Tank shell and
heads
Flanges and
nozzles
Same as above | Steel with
stainless steel
cladding | Treated borated
water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis | TLAA | | C2 | Reactor Cod | olant System and | l Connected Lir | nes (PWR) | | | _ | |------|---------------|----------------------------------|---|-----------------|--|---|-----------------------| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | R-56 | IV.C2.1-
c | and fittings | Stainless
steel/ steel
with stainless
steel cladding | Reactor coolant | Cracking/ cyclic
loading | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections IWB,
IWC, and IWD," for Class 1
components | No | | R-30 | IV.C2.1-
c | and fittings | Stainless
steel/ steel
with stainless
steel cladding | Reactor coolant | Cracking/ stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | This Page Intentionally Left Blank ## D1. STEAM GENERATOR (RECIRCULATING) ## Systems, Structures, and Components This section consists of the recirculating-type steam generators, as found in Westinghouse and Combustion Engineering pressurized water reactors (PWRs), including all internal components and water/steam nozzles and safe ends. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," the primary water side (tube side) of the steam generator is governed by Group A Quality Standards, and the secondary water side is governed by Group B Quality Standards. ## **System Interfaces** The systems that interface with the steam generators include the reactor coolant system and connected lines (IV.C2), the containment isolation components (V.C), the main steam system (VIII.B1), the feedwater system (VIII.D1), the steam generator blowdown system (VIII.F), and the auxiliary feedwater system (VIII.G). | ltem | Link | Structure
and/or
Component | Material | Environment | | Aging Management Program
(AMP) | Further
Evaluation | |------|------------------------|---|--|----------------------------------|---|---|------------------------| | R-07 | IV.D1.1-i | Class 1 piping,
fittings and
primary
nozzles, safe
ends,
manways, and
flanges | Stainless
steel, steel
with stainless
steel or
nickel-alloy
cladding,
nickel-alloy | Reactor coolant | corrosion cracking,
primary water stress
corrosion cracking | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components and
Chapter XI.M2, "Water Chemistry,"
for PWR primary water in EPRI TR-
105714 | No | | R-10 | IV.D1.1-I | Closure bolting | Steel | Air with reactor coolant leakage | Cracking/ stress corrosion cracking | Chapter XI.M18, "Bolting Integrity" | No | | R-17 | IV.D1.1-g
IV.D1.1-k | External surfaces | Steel | Air with borated water leakage | | Chapter XI.M10, "Boric Acid
Corrosion" | No | | R-01 | IV.D1.1-j | Instrument
penetrations
and primary
side nozzles | Nickel alloy | Reactor coolant | water stress
corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Orders, Bulletins and Generic Letters associated with nickel alloys. | Yes, plant
specific | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | D1 | Steam Generator (Recirculating) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|---------------|---|---|--|--|---|-----------------------| | R-04 | h | and piping elements | stainless
steel, cast
austenitic
stainless
steel, carbon
steel with
nickel-alloy or
stainless steel
cladding,
nickel-alloy | | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | | | R-37 | IV.D1.1-
d | Pressure
boundary and
structural
Steam nozzle
and safe end
FW nozzle and
safe end | Steel | Secondary
feedwater/steam | Wall thinning/ flow-
accelerated
corrosion | Chapter XI.M17, "Flow-Accelerated Corrosion" | No | | R-32 | IV.D1.1-1 | Steam
generator
closure bolting | Steel | System
temperature up to
340°C (644°F) | Loss of preload/
stress relaxation | Chapter XI.M18, "Bolting Integrity" | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | D1 | Steam Generator (Recirculating) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation |
------|------------------------|---|----------|------------------------------|--|--|---| | R-33 | IV.D1.1-a
IV.D1.1-b | Steam
generator
components | Steel | Secondary
feedwater/steam | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue" for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | R-39 | IV.D1.1-
e | Steam
generator
feedwater
impingement
plate and
support | Steel | Secondary
feedwater | Loss of material/
erosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | R-34 | IV.D1.1-
c | Steam generator shell assembly (for OTSG), upper and lower shell, and transition cone (for recirculating steam generator) | Steel | Secondary
feedwater/steam | Loss of material/
general, pitting and
crevice corrosion | IWB, IWC, and IWD," for Class 2 | Yes,
detection of
aging effects is
to be evaluated | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | D1 | Steam Generator (Recirculating) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | 199 | Further
Evaluation | |------|------------------------|----------------------------------|--------------|------------------------------|--|--|-----------------------| | R-40 | IV.D1.2-i
IV.D1.2-j | Tube plugs | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M19, "Steam Generator
Tubing Integrity" and Chapter
XI.M2, "Water Chemistry," for PWR
primary water in EPRI TR-105714 | No | | R-41 | IV.D1.2- | Tube support
lattice bars | Steel | Secondary
feedwater/steam | Loss of material/
flow-accelerated
corrosion | commitment to submit, for NRC | | | R-42 | IV.D1.2-
k | Tube support plates | Steel | Secondary
feedwater/steam | Ligament cracking/
corrosion | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|---------------|----------------------------------|--------------|------------------------------|---|--|-----------------------| | R-43 | IV.D1.2-
g | Tubes | Nickel alloy | Secondary
feedwater/steam | of carbon steel tube support plate | Chapter XI.M19, "Steam Generator Tubing Integrity" and Chapter XI.M2, "Water Chemistry," for PWR secondary water in EPRI TR-102134. For plants where analyses were completed in response to NRC Bulletin 88-02 "Rapidly Propagating Cracks in SG Tubes," the results of those analyses have to be reconfirmed for the period of license renewal. | | | R-44 | IV.D1.2-
a | Tubes and
sleeves | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M19, "Steam Generator Tubing Integrity" and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | No | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM D1 Steam Generator (Recirculating) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|---------------|----------------------------------|--------------|---|--|---|-----------------------| | R-45 | IV.D1.2-
d | Tubes and
sleeves | Nickel alloy | Reactor coolant
and secondary
feedwater/steam | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | Yes,
TLAA | | R-48 | IV.D1.2-
c | Tubes and sleeves | Nickel alloy | Secondary
feedwater/steam | Cracking/
intergranular attack | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | no | | R-47 | IV.D1.2-
b | Tubes and sleeves | Nickel alloy | Secondary
feedwater/steam | Cracking/ outer diameter stress corrosion cracking | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | no | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|---------------|---|--------------|------------------------------|---|---|-----------------------| | R-49 | IV.D1.2-
e | Tubes and sleeves | Nickel alloy | Secondary
feedwater/steam | Loss of material/
fretting and wear | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | No | | R-50 | IV.D1.2-1 | Tubes and sleeves (exposed to phosphate chemistry) | Nickel alloy | Secondary
feedwater/steam | Loss of material/
wastage and pitting
corrosion | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | No | | R-51 | IV.D1.3-
a | Upper
assembly and
separators
Feedwater inlet
ring and
support | Steel | Secondary
feedwater/steam | Loss of material/
flow-accelerated
corrosion | A plant-specific aging management program is to be evaluated. As noted in Combustion Engineering (CE) Information Notice (IN) 90-04 and NRC IN 91-19 and LER 50-362/90-05-01, this form of degradation has been detected only in certain CE System 80 steam generators. | specific | ## D2. STEAM GENERATOR (ONCE-THROUGH) ## Systems, Structures, and Components This section consists of the once-through type steam generators, as found in Babcock & Wilcox pressurized water reactors (PWRs), including all internal components and water/steam nozzles and safe ends. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," the primary water side (tube side) of the steam generator is governed by Group A Quality Standards, and the secondary water side is governed by Group B Quality Standards. ## **System Interfaces** The systems that interface with the steam generators include the reactor coolant system and connected lines (IV.C2), the main steam system (VIII.B1), the feedwater system (VIII.D1), the steam generator blowdown system (VIII.F), and the auxiliary feedwater system (VIII.G). | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | D2 | Steam Generator (Once-Through) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|------------------------|---|--|-----------------------------------|---
---|------------------------| | R-17 | IV.D2.1-j
IV.D2.1-b | | Steel | Air with borated
water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid
Corrosion" | No | | R-01 | h | Instrument
penetrations
and primary
side nozzles | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 1 components and Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 and plant specific AMP consistent with applicant commitments to NRC Orders, Bulletins and Generic Letters associated with nickel alloys. | Yes, plant
specific | | R-04 | С | Piping, piping components, and piping elements | Steel,
stainless
steel, cast
austenitic
stainless
steel, carbon
steel with
nickel-alloy or
stainless stee
cladding,
nickel-alloy | | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of extended operation, and, for Class 1 components, environmental effects on fatigue are to be addressed. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c)(1)(i) and (ii), and for addressing environmental effects on fatigue. See Chapter X.M1 of this report for meeting the requirements of 10 CFR 54.21(c)(1)(iii). | Yes,
TLAA | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM D2 Steam Generator (Once-Through) | Item | Link | Structure
and/or
Component | Material | | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|------------------------|--|----------|---|--|--|-----------------------| | R-38 | | Pressure
boundary and
structural
FW and AFW
nozzles and
safe ends
Steam nozzles
and safe ends | Steel | Secondary
feedwater/steam | Wall thinning/ flow-
accelerated
corrosion | Chapter XI.M17, "Flow-Accelerated Corrosion" | No | | R-31 | | Secondary
manways and
handholes
(cover only) | Steel | Air with leaking
secondary-side
water and/or
steam | Loss of material/
erosion | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 2
components | No | | R-32 | IV.D2.1-
k | Steam
generator
closure bolting | Steel | System
temperature up to
340°C (644°F) | Loss of preload/
stress relaxation | Chapter XI.M18, "Bolting Integrity" | No | | R-33 | IV.D2.1-g
IV.D2.1-d | Steam
generator
components | Steel | Secondary
feedwater/steam | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue" for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | V REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM D2 Steam Generator (Once-Through) | | | | | | | | | | | |---|---------------|--|---|------------------------------|--|---|------------------------|--|--|--| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | | | | R-36 | IV.D2.1-i | Steam
generator
components
Such as,
secondary side
nozzles (vent,
drain, and
instrumentation) | Nickel alloy | Secondary
feedwater/steam | Cracking/ stress
corrosion cracking | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | | | | R-35 | IV.D2.1-
a | generator | Steel with
stainless stee
or nickel-alloy
cladding | | Cracking/ stress
corrosion cracking | Chapter XI.M1, "ASME Section XI
Inservice Inspection, Subsections
IWB, IWC, and IWD," for Class 1
components and
Chapter XI.M2, "Water Chemistry,"
for PWR primary water in EPRI TR-
105714 | No | | | | IV REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM D2 Steam Generator (Once-Through) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|------------------------|---|--------------|------------------------------|--|--|---| | R-34 | | Steam generator shell assembly (for OTSG), upper and lower shell, and transition cone (for recirculating steam generator) | Steel | Secondary
feedwater/steam | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M1, "ASME Section XI Inservice Inspection, Subsections IWB, IWC, and IWD," for Class 2 components and Chapter XI.M2, "Water Chemistry," for PWR secondary water in EPRI TR-102134 As noted in NRC Information Notice IN 90-04, general and pitting corrosion of the shell exists, the AMP guidelines in Chapter XI.M1 may not be sufficient to detect general and pitting corrosion, and additional inspection procedures are to be developed, if required. | Yes,
detection of
aging effects is
to be evaluated | | R-40 | IV.D2.2-f
IV.D2.2-g | Tube plugs | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M19, "Steam Generator
Tubing Integrity" and Chapter
XI.M2, "Water Chemistry," for PWR
primary water in EPRI TR-105714 | | | R-44 | IV.D2.2-
a | Tubes and
sleeves | Nickel alloy | Reactor coolant | Cracking/ primary water stress corrosion cracking | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR primary water in EPRI TR-
105714 | No | | IV | REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM | |----|---| | D2 | Steam Generator (Once-Through) | | | | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|---------------|----------------------------------|--------------|---|--|---|-----------------------| | R-46 | | Tubes and sleeves | Nickel alloy | Reactor coolant
and secondary
feedwater/steam | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be performed for the period of license renewal. See the Standard Review Plan, Section 4.3 "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | R-48 | IV.D2.2-
c | Tubes and
sleeves | Nickel alloy | Secondary
feedwater/steam | Cracking/
intergranular attack | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | no | | R-47 | IV.D2.2-
b | Tubes and
sleeves | Nickel alloy | Secondary
feedwater/steam | Cracking/ outer diameter stress corrosion cracking | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | no | | R-49 | IV.D2.2-
d | Tubes and
sleeves | Nickel alloy | Secondary
feedwater/steam | Loss of material/
fretting and wear | Chapter XI.M19, "Steam Generator
Tubing Integrity" and
Chapter XI.M2, "Water Chemistry,"
for PWR secondary water in EPRI
TR-102134 | No | ## F. COMMON MISCELLANEOUS MATERIAL ENVIRONMENT COMBINATIONS # Systems, Structures, and Components This section includes the aging management programs for miscellaneous material environment combinations
which may be found throughout the reactor vessel, internals and reactor coolant system's structures and components. For the material-environment combinations in this part, there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation, and, therefore, no resulting aging management programs for these structures and components are required. ## **System Interfaces** The structures and components covered in this section belong to the engineered safety features in PWRs and BWRs. (For example, see System Interfaces in V.A to V.D2 for details.) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-------|--|---------------------------------------|--|----------------------------|--------------------------------|-----------------------| | RP-02 | RP-02 | Piping, piping components, and piping elements | Cast
austenitic
stainless steel | Air – indoor
uncontrolled
(External) | None | None | No | | RP-03 | RP-03 | Piping, piping components, and piping elements | Nickel alloy | Air – indoor
uncontrolled
(External) | None | None | No | | RP-04 | RP-04 | Piping, piping components, and piping elements | Stainless
steel | Air – indoor
uncontrolled
(External) | None | None | No | | RP-05 | RP-05 | Piping, piping components, and piping elements | Stainless
steel | Air with borated
water leakage | None | None | No | | RP-06 | RP-06 | Piping, piping components, and piping elements | Stainless
steel | Concrete | None | None | No | | RP-07 | RP-07 | Piping, piping components, and piping elements | Stainless
steel | Gas | None | None | No | | RP-08 | RP-08 | Piping, piping components, and piping elements | Stainless
steel | Treated borated water | None | None | No | | V REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM Common Miscellaneous Material Environment Combinations | | | | | | | | | | |--|-------|--|----------|-------------|----------------------------|--------------------------------|-----------------------|--|--| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | | | RP-01 | RP-01 | Piping, piping components, and piping elements | Steel | Concrete | None | None | No | | | End of Chapter IV This Page Intentionally Left Blank